Periodic Jacobi operator with finitely supported perturbations: The inverse resonance problem
نویسندگان
چکیده
منابع مشابه
The Inverse Resonance Problem for Perturbations of Algebro-geometric Potentials
Algebro-geometric potentials q of the one-dimensional Schrödinger operator L = −d2/dx2 + q are a small but important class of potentials with a number of rather nice properties. Their name is due to the fact that there exists an a differential operator P of odd order such that the pair (P,L) satisfies the algebraic relation P 2 = R(L) for some polynomial R of odd degree. Moreover, the commutato...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولInverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions
In this paper, we study the inverse problem for Dirac differential operators with discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...
متن کاملThe Discrete Spectrum for Complex Perturbations of Periodic Jacobi Matrices
We study spectrum inclusion regions for complex Jacobi matrices which are compact perturbations of real periodic Jacobi matrix. The condition sufficient for the lack of discrete spectrum for such matrices is given.
متن کامل1d Schrödinger Operator with Periodic plus Compactly Supported Potentials
We consider the 1D Schrödinger operator Hy = −y′′ + (p+ q)y with a periodic potential p plus compactly supported potential q on the real line. The spectrum of H consists of an absolutely continuous part plus a finite number of simple eigenvalues in each spectral gap γn 6= ∅, n > 0, where γ0 is unbounded gap. We prove the following results: 1) we determine the distribution of resonances in the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2012
ISSN: 0022-0396
DOI: 10.1016/j.jde.2011.09.034